下变频器工作原理
在卫通站中,几乎毫无例外地都采用了超外差接收体制,这种体制的特点是把微波信号放大到一定程度后,变为中频信号继续进行放大,达到了足够高的电平后,再进行解调。
来自天线的射频信号在微波低噪声放大器中只能放大50~60dB,仍然十分微弱,无法立即进行解调。如果继续用微波器件进行放大,设备往往太复杂、太昂贵了,而且增益太高还会引起自激。如果通过变频,对频率较低的中频信号进行放大,就可以得到很高的增益,所用的器件和电路都不难实现。

图二 下变频器的工作原理及信号流程框图
图二是一个实用的二次变频下变频器工作原理及信号流程框图。从图中可以看出,除去两个本机振荡器之外,下变频器的变频链由7个部件组成。为了保证各部件之间的阻抗匹配,各部件之间还加了隔离器。
上变频器工作原理
上变频器把带有信息的已调中频信号不失真地变换到卫星通信射频频段。频率覆盖范围为500MHz(扩展C频段频率范围为575MHz),射频载波频率可根据需要在5925MHz (扩展C频段为5850MHz)到6425MHz之间任选。选择射频载波频率时的频率步进由微波频率合成器决定。
卫星通信地球站上变频器一般都采用二次变频方式。70MHz的已调中频信号与一个单点本机振荡器的本振信号混频,产生了1GHz左右的高中频信号,高中频信号再与一个微波频率合成器的本振信号混频产生了6GHz频段的已调射频信号。变频后产生的已调射频信号再经过场效应管放大器放大到微波功率放大器推动级所需电平后,送往微波功率放大器。上变频器主要由上变频链路、射频放大器和频率源(包括作为低本振的单点本机振荡器和作为高本振的微波频率合成器)等部分组成。

图三是一个二次变频上变频器工作原理和信号流程框图。各部件的工作用同下变频器。
Sample FFC1000系列全频带微波宽带变频器基于盛铂科技创新的OBT-HU 一体化仪表平台和成熟微波毫米波上下变频技术,实现宽带上变频功能,仪表化操作界面,便于实验室和外场使用。可应用 于航空航天和国防电子;无线通信和宽带光通信;雷达和微波宽带信号等多个场所。更多其他产品内容可咨询:400-621-8906

SCP4000E系列射频微波功率计:宽频覆盖,便捷互联,一款面向现代测试需求的国产功率测量工具
2026-01-26
点击查看详细>>
恒温晶振选型必读:1分钟看懂OCXO相位噪声对系统信噪比的决定性影响
2026-01-21
点击查看详细>>
点频信号源与频综(频率综合器)的主要区别及如何选择
2026-01-15
点击查看详细>>
应对40GHz高频功率测量的技术挑战:盛铂科技功率测量解决方案解析
2026-01-13
点击查看详细>>
SCP4000E系列POE/USB双接口功率计:灵活应对现场与远程的CW功率测量需求
2026-01-09
点击查看详细>>
高性能微波系统核心:锁相介质振荡器(PDRO)选型与应用指南
2026-01-07
在雷达、卫星通信、高速测试测量及5G/6G研发等高性能微波系统中,稳定、纯净的频率源是决定系统性能上限的关键。锁相介质振荡器(PDRO)以其低相位噪声性能、高频率稳定性和紧凑的结构,成为众多高端应用的选择。面对复杂的系统需求,如何科学选型?
点击查看详细>>